Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Peripher Nerv Syst ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600691

RESUMEN

Nerve conduction studies are usually the first diagnostic step in peripheral nerve disorders and their results are the basis for planning further investigations. However, there are some commonplaces in the interpretation of electrodiagnostic findings in peripheral neuropathies that, although useful in the everyday practice, may be misleading: (1) conduction block and abnormal temporal dispersion are distinctive features of acquired demyelinating disorders; (2) hereditary neuropathies are characterized by uniform slowing of conduction velocity; (3) axonal neuropathies are simply diagnosed by reduced amplitude of motor and sensory nerve action potentials with normal or slightly slow conduction velocity. In this review, we reappraise the occurrence of uniform and non-uniform conduction velocity slowing, conduction block and temporal dispersion in demyelinating, dysmyelinating and axonal neuropathies attempting, with a translational approach, a correlation between electrophysiological and pathological features as derived from sensory nerve biopsy in patients and animal models. Additionally, we provide some hints to navigate in this complex field.

2.
J Neurol ; 271(3): 1063-1071, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233678

RESUMEN

BACKGROUND: Case-reports/series and cohorts of Guillain-Barré syndrome (GBS) associated with COVID-19 vaccination have been reported. METHODS: A systematic review and meta-analysis of cohort studies of GBS after COVID-19 vaccination was carried out. Incidence and incidence rate ratio for a number of vaccine doses and risk of GBS, also considering the specific vaccine technology, were calculated in a random-effects model. RESULTS: Of 554 citations retrieved, 518 were discarded as irrelevant. We finally included 15 studies. The random effect model yielded, regardless of the vaccine technology, 1.25 (95%CI 0.21; 2.83) GBS cases per million of COVID-19 vaccine doses, 3.93 (2.54; 5.54) cases per million doses for adenovirus-vectored vaccines and 0.69 (0.38; 1.06) cases per million doses for mRNA vaccines. The GBS risk was 2.6 times increased with the first dose. Regardless of the vaccine technology, the GBS risk was not increased but disaggregating the data it was 2.37 (1.67; 3.36) times increased for adenovirus-vectored vaccines and 0.32 (0.23; 0.47) for mRNA vaccines. Mortality for GBS after vaccination was 0.10 per million doses and 4.6 per GBS cases. CONCLUSIONS: Adenovirus-vectored vaccines showed a 2.4 times increased risk of GBS that was about seven times higher compared with mRNA-based vaccines. The decreased GBS risk associated with mRNA vaccines was possibly due to an elicited reduction of infections, including SARS-CoV-2, associated with GBS during the vaccination period. How adenovirus-vectored COVID-19 vaccines may trigger GBS is unclear and further studies should investigate the relationship between vaccine technologies and GBS risk.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Síndrome de Guillain-Barré , Humanos , COVID-19/prevención & control , COVID-19/complicaciones , Vacunas contra la COVID-19/efectos adversos , Síndrome de Guillain-Barré/inducido químicamente , Síndrome de Guillain-Barré/epidemiología , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/efectos adversos , Vacunación/efectos adversos
3.
Eur J Neurol ; 31(2): e16094, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37823707

RESUMEN

BACKGROUND AND PURPOSE: The association between Guillain-Barré syndrome (GBS) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is debated. This study reappraises, after three pandemic years, the epidemiological data and the features of GBS in SARS-CoV-2 patients. METHODS: A systematic review and meta-analysis of case reports/series and cohort studies published between 1 January 2020 and 19 April 2023 was performed. RESULTS: In all, 209 case reports/series (304 patients) and 26 cohort studies were included. The risk of GBS in northern Italy during the first pandemic wave was 2.85 times increased (95% confidence interval [CI] 1.54; 5.25) whereas in some countries the risk during the first pandemic year was 0.17 times reduced (risk ratio 0.83, 95% CI 0.75; 0.93). The incidence of GBS in SARS-CoV-2 Italian hospitalized cohorts was 8.55 per 1000 (95% CI 5.33; 12.49) with an estimated incidence of 0.13 GBS per 1000 in the SARS-CoV-2 infected population. In European cohorts the pooled rate of GBS with SARS-CoV-2 infection was 61.3% of the total. GBS patients with SARS-CoV-2 infection showed more frequently, but not differently from non-infected patients, the classical clinical presentation and the demyelinating subtype. Cranial nerves were more frequently involved in SARS-CoV-2 infected patients. CONCLUSIONS: An increased risk of GBS occurred in northern Italy during early COVID-19 pandemic. The recognition of the 'Italian factor' reconciles contrasting results of the epidemiological studies. The slightly reduced GBS risk in other countries and the relatively high frequency of GBS associated with SARS-CoV-2 infection can be explained by the adopted health measures that decreased the circulation of other GBS infective antecedents.


Asunto(s)
COVID-19 , Síndrome de Guillain-Barré , Humanos , COVID-19/complicaciones , COVID-19/epidemiología , SARS-CoV-2 , Síndrome de Guillain-Barré/epidemiología , Síndrome de Guillain-Barré/etiología , Pandemias , Italia/epidemiología
4.
J Peripher Nerv Syst ; 28 Suppl 3: S23-S35, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37272673

RESUMEN

BACKGROUND AND AIMS: Autoimmune neuropathies are classified, on the basis of pathophysiology, as demyelinating or axonal. The term nodo-paranodopathy, introduced in 2013 to better categorize the neuropathies with antiganglioside antibodies and later expanded to include neuropathies with antibodies to nodal and paranodal axoglial complexes, characterizes disorders in which the nodal region is critical in the pathogenesis. These neuropathies, although presenting electrophysiologic demyelinating features do not show pathologic evidence of segmental demyelination, or, although being classified as axonal, can show reversible nerve conduction failure and rapid recovery contrary with the communal concept of an axonal neuropathy. METHODS: In this personal view is reported, with a splitting approach, an update on autoimmune nodo-paranodopathies, classified according to the domains of peripheral nerve fiber, the target antigens and the antibody class and subclass involved. The clinical features, the electrophysiologic findings, the results of the immunopathological and ultrastructural studies, the pathophysiology and treatment are also described. RESULTS AND INTERPRETATION: The nodo-paranodopathy category integrates the clinical classification of autoimmune neuropathies and expands the traditional dichotomous demyelinating and axonal classification. It helps to a better systematization pointing to the domain and target antigens of the autoimmune process, it resolves conflicting pathologic and electrophysiologic findings, reconciles the contradiction that axonal neuropathies may be rapidly reversible, avoids taxonomical confusion and possible misdiagnoses. Finally this categorization, through the identification of the specific antibody and its prevalent class and subclass, clarifies the pathophysiological mechanisms and addresses to a more targeted therapeutic approach.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Humanos , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/terapia , Enfermedades del Sistema Nervioso Periférico/patología , Nervios Periféricos/patología , Axones/patología , Conducción Nerviosa/fisiología , Autoanticuerpos
5.
Brain Sci ; 13(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36831821

RESUMEN

OBJECTIVES: The homology of hemispheric cortical areas plays a crucial role in brain functionality. Here, we extend this concept to the homology of the dominant and non-dominant hemi-bodies, investigating the relationship of the two corticospinal tracts (CSTs). The evoked responses provide an estimate of the number of in-phase recruitments via their amplitude as a suitable indicator of the neuronal projections' integrity. An innovative concept derived from experience in the somatosensory system is that their morphology reflects the recruitment pattern of the whole circuit. METHODS: CST homology was assessed via the Fréchet distance between the morphologies of motor-evoked potentials (MEPs) using a transcranial magnetic stimulation (TMS) in the homologous left- and right-hand first dorsal interosseous muscles of 40 healthy volunteers (HVs). We tested the working hypothesis that the inter-side Fréchet distance was higher than the two intra-side distances. RESULTS: In addition to a clear confirmation of the working hypothesis (p < 0.0001 for both hemi-bodies) verified in all single subjects, we observed that the intra-side Fréchet distance was higher for the dominant than the non-dominant one. Interhemispheric morphology similarity increased with right-handedness prevalence (p = 0.004). CONCLUSIONS: The newly introduced measure of circuit recruitment patterning represents a potential benchmark for the evaluation of inter-lateral mechanisms expressing the relationship between homologous hemilateral structures subtending learning and suggests that variability in recruitment patterning physiologically increases in circuits expressing greater functionality.

6.
Eur J Neurol ; 29(11): 3358-3367, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35837806

RESUMEN

BACKGROUND AND PURPOSE: Many single cases and small series of Guillain-Barré syndrome (GBS) associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reported during the coronavirus disease 19 (COVID-19) outbreak worldwide. However, the debate regarding the possible role of infection in causing GBS is still ongoing. This multicenter study aimed to evaluate epidemiological and clinical findings of GBS diagnosed during the COVID-19 pandemic in northeastern Italy in order to further investigate the possible association between GBS and COVID-19. METHODS: Guillain-Barré syndrome cases diagnosed in 14 referral hospitals from northern Italy between March 2020 and March 2021 were collected and divided into COVID-19-positive and COVID-19-negative. As a control population, GBS patients diagnosed in the same hospitals from January 2019 to February 2020 were considered. RESULTS: The estimated incidence of GBS in 2020 was 1.41 cases per 100,000 persons/year (95% confidence interval 1.18-1.68) versus 0.89 cases per 100,000 persons/year (95% confidence interval 0.71-1.11) in 2019. The cumulative incidence of GBS increased by 59% in the period March 2020-March 2021 and, most importantly, COVID-19-positive GBS patients represented about 50% of the total GBS cases with most of them occurring during the two first pandemic waves in spring and autumn 2020. COVID-19-negative GBS cases from March 2020 to March 2021 declined by 22% compared to February 2019-February 2020. CONCLUSIONS: Other than showing an increase of GBS in northern Italy in the "COVID-19 era" compared to the previous year, this study emphasizes how GBS cases related to COVID-19 represent a significant part of the total, thus suggesting a relation between COVID-19 and GBS.


Asunto(s)
COVID-19 , Síndrome de Guillain-Barré , COVID-19/complicaciones , COVID-19/epidemiología , Síndrome de Guillain-Barré/etiología , Humanos , Incidencia , Pandemias , SARS-CoV-2
7.
J Peripher Nerv Syst ; 27(3): 197-205, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35700346

RESUMEN

Electrodiagnostic (EDx) studies are helpful in diagnosing and subtyping of Guillain-Barré syndrome (GBS). Published criteria for differentiation into GBS subtypes focus on cutoff values, but other items receive less attention, although they may influence EDx subtyping: (a) extensiveness of EDx testing, (b) nerve-specific considerations, (c) distal compound muscle action potential (CMAP)-amplitude requirements, (d) criteria for conduction block and temporal dispersion. The aims of this study were to investigate how these aspects were approached by neuromuscular EDx experts in practice and how this was done in previously published EDx criteria for GBS. A completed questionnaire was returned by 24 (of 49) members of the electrophysiology expertise group from the International GBS Outcome Study. Six published EDx criteria for GBS subtyping were compared regarding these aspects. The indicated minimal number of motor nerves to study varied among respondents and tended to be more extensive in equivocal than normal studies. Respondents varied considerably regarding usage of compression sites for subtyping (median/wrist, ulnar/elbow, peroneal/fibular head): 29% used all variables from all sites, 13% excluded all sites, and 58% used only some sites and/or variables. Thirty-eight percent of respondents required a minimal distal CMAP amplitude to classify distal motor latency as demyelinating, and 58% did for motor conduction velocity. For proximal/distal CMAP-amplitude ratio and F-wave latency, a requisite minimal CMAP amplitude was more often required (79%). Also, the various published criteria sets showed differences on all items. Practical use of EDx criteria for subtyping GBS vary extensively across respondents, potentially lowering the reproducibility of GBS subtyping.


Asunto(s)
Síndrome de Guillain-Barré , Conducción Nerviosa , Síndrome de Guillain-Barré/diagnóstico , Humanos , Conducción Nerviosa/fisiología , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
8.
Clin Neurophysiol ; 138: 231-240, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35078730

RESUMEN

OBJECTIVE: To describe the heterogeneity of electrodiagnostic (EDx) studies in Guillain-Barré syndrome (GBS) patients collected as part of the International GBS Outcome Study (IGOS). METHODS: Prospectively collected clinical and EDx data were available in 957 IGOS patients from 115 centers. Only the first EDx study was included in the current analysis. RESULTS: Median timing of the EDx study was 7 days (interquartile range 4-11) from symptom onset. Methodology varied between centers, countries and regions. Reference values from the responding 103 centers were derived locally in 49%, from publications in 37% and from a combination of these in the remaining 15%. Amplitude measurement in the EDx studies (baseline-to-peak or peak-to-peak) differed from the way this was done in the reference values, in 22% of motor and 39% of sensory conduction. There was marked variability in both motor and sensory reference values, although only a few outliers accounted for this. CONCLUSIONS: Our study showed extensive variation in the clinical practice of EDx in GBS patients among IGOS centers across the regions. SIGNIFICANCE: Besides EDx variation in GBS patients participating in IGOS, this diversity is likely to be present in other neuromuscular disorders and centers. This underlines the need for standardization of EDx in future multinational GBS studies.


Asunto(s)
Síndrome de Guillain-Barré , Conducción Nerviosa , Electrodiagnóstico/métodos , Síndrome de Guillain-Barré/diagnóstico , Humanos , Conducción Nerviosa/fisiología , Evaluación de Resultado en la Atención de Salud , Valores de Referencia
9.
J Neurol Neurosurg Psychiatry ; 93(1): 57-67, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34373238

RESUMEN

Autoimmune neuropathies are named by eponyms, by descriptive terminology or because of the presence of specific antibodies and are traditionally classified, on the basis of pathology and electrophysiology, as primary demyelinating or axonal. However, autoimmune disorders targeting specific molecules of the nodal region, although not showing pathological evidence of demyelination, can exhibit all the electrophysiological changes considered characteristic of a demyelinating neuropathy and acute neuropathies with antiganglioside antibodies, classified as axonal and due to nodal dysfunction, can present with reversible conduction failure and prompt recovery that appear contradictory with the common view of an axonal neuropathy. These observations bring into question the concepts of demyelinating and axonal nerve conduction changes and the groundwork of the classical dichotomous classification.We propose a classification of autoimmune neuropathies based on the involved domains of the myelinated fibre and, when known, on the antigen. This classification, in our opinion, helps to better systematise autoimmune neuropathies because points to the site and molecular target of the autoimmune attack, reconciles some contrasting pathological and electrophysiological findings, circumvents the apparent paradox that neuropathies labelled as axonal may be promptly reversible and finally avoids taxonomic confusion and possible misdiagnosis.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/clasificación , Vaina de Mielina/patología , Antígenos , Autoanticuerpos , Axones/patología , Humanos , Conducción Nerviosa
10.
J Neurophysiol ; 127(1): 204-212, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936818

RESUMEN

Preclinical studies have demonstrated that brain-derived neurotrophic factor (BDNF) plays a crucial role in the homeostatic regulation of cortical excitability and excitation/inhibition balance. Using transcranial magnetic stimulation techniques, we investigated whether BDNF polymorphism could influence cortical excitability of the left and right primary motor cortex in healthy humans. Twenty-nine participants were recruited and genotyped for the presence of the BDNF Val66Met polymorphism, namely homozygous for the valine allele (Val/Val), heterozygotes (Val/Met), and homozygous for the methionine allele (Met/Met). Blinded to the latter, we evaluated inhibitory and facilitatory circuits of the left (LH) and right motor cortex (RH) by measuring resting (RMT) and active motor threshold (AMT), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF). For each neurophysiological metric, we also considered the interhemispheric balance expressed by the laterality index (LI). Val/Val participants (n = 21) exhibited an overall higher excitability of the LH compared with the RH, as probed by lower motor thresholds, lower SICI, and higher ICF. Val/Val participants displayed positive LI, especially for AMT and ICF (all P < 0.05), indicating higher LH excitability and more pronounced interhemispheric excitability imbalance as compared with Met carriers. Our preliminary results suggest that BDNF Val66Met polymorphism might influence interhemispheric balance of motor cortex excitability.NEW & NOTEWORTHY BDNF Val66Met polymorphism might influence interhemispheric balance of motor cortex excitability. Specifically, Val/Val carriers display higher excitability of the left compared with the right primary motor cortex, whereas Met carriers do not show any significant corticomotor excitability imbalance. These preliminary results are relevant to understanding aberrant interhemispheric excitability and excitation/inhibition balance in neurological disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Excitabilidad Cortical/fisiología , Lateralidad Funcional/fisiología , Corteza Motora/fisiología , Inhibición Neural/fisiología , Adulto , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal
13.
Neurophysiol Clin ; 51(2): 183-191, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33685769

RESUMEN

OBJECTIVE: To assess whether patients with acute inflammatory demyelinating polyneuropathy (AIDP) associated with SARS-CoV-2 show characteristic electrophysiological features. METHODS: Clinical and electrophysiological findings of 24 patients with SARS-CoV-2 infection and AIDP (S-AIDP) and of 48 control AIDP (C-AIDP) without SARS-CoV-2 infection were compared. RESULTS: S-AIDP patients more frequently developed respiratory failure (83.3% vs. 25%, P=0.000) and required intensive care unit (ICU) hospitalization (58.3% vs. 31.3%, P=0.000). In C-AIDP, distal motor latencies (DMLs) were more frequently prolonged (70.9% vs. 26.2%, P=0.000) whereas in S-AIDP distal compound muscle action potential (dCMAP) durations were more frequently increased (49.5% vs. 32.4%, P=0.002) and F waves were more often absent (45.6% vs. 31.8%, P=0.011). Presence of nerves with increased dCMAP duration and normal or slightly prolonged DML was elevenfold higher in S-AIDP (31.1% vs. 2.8%, P=0.000);11 S-AIDP patients showed this pattern in 2 nerves. CONCLUSION: Increased dCMAP duration, thought to be a marker of acquired demyelination, can also be oserved in critical illness myopathy. In S-AIDP patients, an increased dCMAP duration dissociated from prolonged DML, suggests additional muscle fiber conduction slowing, possibly due to a COVID-19-related hyperinflammatory state. Absent F waves, at least in some S-AIDP patients, may reflect α-motor neuron hypoexcitability because of immobilization during the ICU stay. These features should be considered in the electrodiagnosis of SARS-CoV-2 patients with weakness, to avoid misdiagnosis.


Asunto(s)
COVID-19/complicaciones , COVID-19/fisiopatología , Síndrome de Guillain-Barré/etiología , Síndrome de Guillain-Barré/fisiopatología , Potenciales de Acción , Adulto , Anciano , Anciano de 80 o más Años , Cuidados Críticos/estadística & datos numéricos , Electrodiagnóstico , Fenómenos Electrofisiológicos , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Neuronas Motoras , Músculo Esquelético/fisiopatología , Conducción Nerviosa , Insuficiencia Respiratoria/etiología , Células Receptoras Sensoriales
14.
Front Neurol ; 12: 625144, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584530

RESUMEN

Introduction: COVID-19-associated muscular complications may comprise myalgia, weakness, wasting, and rhabdomyolysis. Skeletal muscle damage in COVID-19 may be due to direct infection by the virus SARS-CoV-2 through interaction with the ACE2 receptor, systemic hyper-inflammatory state with cytokine release and homeostatic perturbation, an autoimmune process, or myotoxic drugs. Disclosing the cause of weakness in an individual patient is therefore difficult. Case Description: We report two patients, who survived typical COVID-19 pneumonia requiring intensive care treatment and who developed early on myalgia and severe proximal weakness in all four limbs. Laboratory exams revealed elevated serum creatine kinase and markedly increased C-reactive protein and interleukin 6, concurring with a systemic inflammatory response. On admission in neurorehabilitation (4 and 7 weeks after COVID-19 onset, respectively), the patients presented with proximal flaccid tetraparesis and limb-girdle muscle atrophy. Motor nerve conduction studies showed decreased amplitude and prolonged duration of compound muscle action potentials (CMAPs) with normal distal motor latencies and normal conduction velocities in median and ulnar nerves. Needle electromyography in proximal muscles revealed spontaneous activity in one and myopathic changes in both patients. Discussion: Clinical, laboratory, and electrodiagnostic findings in these patients were unequivocally consistent with myopathy. Interestingly, increased distal CMAP duration has been described in patients with critical illness myopathy (CIM) and reflects slow muscle fiber conduction velocity due to membrane hypo-excitability, possibly induced by inflammatory cytokines. By analogy with CIM, the pathogenesis of COVID-19-related myopathy might also depend on hyperinflammation and metabolic pathways that may affect muscles in a pathophysiological continuum from hypo-excitability to necrosis.

16.
J Neurol Neurosurg Psychiatry ; 92(7): 751-756, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33158914

RESUMEN

OBJECTIVE: Single cases and small series of Guillain-Barré syndrome (GBS) have been reported during the SARS-CoV-2 outbreak worldwide. We evaluated incidence and clinical features of GBS in a cohort of patients from two regions of northern Italy with the highest number of patients with COVID-19. METHODS: GBS cases diagnosed in 12 referral hospitals from Lombardy and Veneto in March and April 2020 were retrospectively collected. As a control population, GBS diagnosed in March and April 2019 in the same hospitals were considered. RESULTS: Incidence of GBS in March and April 2020 was 0.202/100 000/month (estimated rate 2.43/100 000/year) vs 0.077/100 000/month (estimated rate 0.93/100 000/year) in the same months of 2019 with a 2.6-fold increase. Estimated incidence of GBS in COVID-19-positive patients was 47.9/100 000 and in the COVID-19-positive hospitalised patients was 236/100 000. COVID-19-positive patients with GBS, when compared with COVID-19-negative subjects, showed lower MRC sum score (26.3±18.3 vs 41.4±14.8, p=0.006), higher frequency of demyelinating subtype (76.6% vs 35.3%, p=0.011), more frequent low blood pressure (50% vs 11.8%, p=0.017) and higher rate of admission to intensive care unit (66.6% vs 17.6%, p=0.002). CONCLUSIONS: This study shows an increased incidence of GBS during the COVID-19 outbreak in northern Italy, supporting a pathogenic link. COVID-19-associated GBS is predominantly demyelinating and seems to be more severe than non-COVID-19 GBS, although it is likely that in some patients the systemic impairment due to COVID-19 might have contributed to the severity of the whole clinical picture.


Asunto(s)
COVID-19/complicaciones , Síndrome de Guillain-Barré/epidemiología , Adulto , Anciano , COVID-19/diagnóstico , COVID-19/terapia , Femenino , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/terapia , Hospitalización , Humanos , Incidencia , Italia , Masculino , Persona de Mediana Edad , Derivación y Consulta , Estudios Retrospectivos
17.
J Neurol Neurosurg Psychiatry ; 91(10): 1105-1110, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32855289

RESUMEN

A systematic review from 1 January to 30 June 2020 revealed 42 patients with Guillain-Barré syndrome (GBS) associated with SARS-CoV-2 infection. Single cases and small series were reported from 13 countries, the majority from Europe (79.4%) and especially from Italy (30.9%). SARS-CoV-2 infection was demonstrated by nasopharyngeal swab (85.7%) and serology (14.3%). Median time between COVID-19 and GBS onset in 36 patients was 11.5 days (IQR: 7.7-16). The most common clinical features were: limb weakness (76.2%), hypoareflexia (80.9 %), sensory disturbances (66.7 %) and facial palsy (38.1%). Dysautonomia occurred in 19%, respiratory failure in 33.3% and 40.5% of patients were admitted in intensive care unit. Most patients (71.4%) had the classical clinical presentation but virtually all GBS variants and subtypes were reported. Cerebrospinal fluid (CSF) albumin-cytological dissociation was found in 28/36 (77.8%) and PCR for SARS-CoV-2 was negative in 25/25 patients. Electrodiagnosis was demyelinating in 80.5% and levels 1 and 2 of Brighton criteria of diagnostic certainty, when applicable, were fulfilled in 94.5% patients. Antiganglioside antibodies were positive in only 1/22 patients. Treatments were intravenous immunoglobulin and/or plasma exchange (92.8%) with, at short-time follow-up, definite improvement or recovery in 62.1% of patients. One patient died. In conclusion, the most frequent phenotype of GBS in SARS-CoV-2 infection is the classical sensorimotor demyelinating GBS responding to the usual treatments. The time interval between infectious and neuropathic symptoms, absence of CSF pleocytosis and negative PCR support a postinfectious mechanism. The abundance of reports suggests a pathogenic link between SARS-CoV-2 infection and GBS but a case-control study is greatly needed.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/complicaciones , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/virología , Neumonía Viral/complicaciones , Adulto , Anciano , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/terapia , Femenino , Síndrome de Guillain-Barré/terapia , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/terapia , SARS-CoV-2 , Adulto Joven
18.
Clin Neurophysiol ; 131(10): 2367-2374, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828039

RESUMEN

It is common belief that axonal neuropathies are characterized by simple axonal degeneration and loss and that the electrophysiological correlates are just reduced compound muscle action potential and sensory nerve action potential amplitudes with normal or slightly slow conduction velocity. However, axonal autoimmune neuropathies with involvement of the nodal region and axonal neuropathies due to energy restriction such as occurring in nerve ischemia, thiamine deficiency, critical illness, and mitochondrial disorders present conduction failure that can be either reversible with prompt recovery or progress to axonal degeneration with poor outcome. Moreover autoimmune axonal neuropathies due to nodal voltage gated sodium channels dysfunction/disruption may show slowing of conduction velocity, even in the demyelinating range, possibly due to prolongation of the depolarization time required to reach the threshold for action potential regeneration at subsequent nodes. These observations widen the spectrum of the electrophysiological features in some axonal neuropathies, should be taken into account to avoid misdiagnoses and for correct prognostication, and should stimulate the quest of timely targeted treatments that can eventually halt the progression from conduction failure to axonal degeneration.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Conducción Nerviosa/fisiología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Axones/patología , Electrodiagnóstico , Humanos , Enfermedades del Sistema Nervioso Periférico/patología
19.
Neurophysiol Clin ; 50(3): 139-144, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32595063

RESUMEN

Hyper-reflexia is occasionally seen in acute motor axonal neuropathy (AMAN), but its pathophysiology is unclear. We report a patient with AMAN following Campylobacter jejuni enteritis, who showed generalized hyper-reflexia, bilateral Hoffmann sign and right Babinski sign. MRI and transcranial magnetic stimulation of the motor cortex disclosed no corticospinal tract involvement. An extensive electrophysiological investigation documented α-motoneuron hyperexcitability and dysfunction of the interneuronal inhibitory circuits in the spinal anterior horn. We propose an immune-mediated damage of the spinal inhibitory interneuronal network as possible mechanism inducing hyper-reflexia in AMAN.


Asunto(s)
Células del Asta Anterior/fisiología , Infecciones por Campylobacter/complicaciones , Síndrome de Guillain-Barré/fisiopatología , Reflejo Anormal/fisiología , Adulto , Potenciales Evocados Motores , Femenino , Síndrome de Guillain-Barré/etiología , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Conducción Nerviosa , Reflejo Anormal/inmunología , Estimulación Magnética Transcraneal
20.
Neurol Sci ; 41(12): 3719-3727, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32518996

RESUMEN

OBJECTIVE: The interpretation of electrophysiological findings may lead to misdiagnosis in polyneuropathies. We investigated the electrodiagnostic accuracy of three supervised learning algorithms (SLAs): shrinkage discriminant analysis, multinomial logistic regression, and support vector machine (SVM), and three expert and three trainee neurophysiologists. METHODS: We enrolled 434 subjects with the following diagnoses: chronic inflammatory demyelinating polyneuropathy (99), Charcot-Marie-Tooth disease type 1A (124), hereditary neuropathy with liability to pressure palsy (46), diabetic polyneuropathy (67), and controls (98). In each diagnostic class, 90% of subjects were used as training set for SLAs to establish the best performing SLA by tenfold cross validation procedure and 10% of subjects were employed as test set. Performance indicators were accuracy, precision, sensitivity, and specificity. RESULTS: SVM showed the highest overall diagnostic accuracy both in training and test sets (90.5 and 93.2%) and ranked first in a multidimensional comparison analysis. Overall accuracy of neurophysiologists ranged from 54.5 to 81.8%. CONCLUSIONS: This proof of principle study shows that SVM provides a high electrodiagnostic accuracy in polyneuropathies. We suggest that the use of SLAs in electrodiagnosis should be exploited to possibly provide a diagnostic support system especially helpful for the less experienced practitioners.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Polineuropatías , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Algoritmos , Electrodiagnóstico , Humanos , Polineuropatías/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...